Data Processor Types¶
Header files defining the data processors type are in the processor folder.
# |
Name |
Description |
---|---|---|
1 |
Accounter |
Adds additional information to the payload to facilitate packet reconstruction. |
2 |
Accumulator |
Tallies a running sum of the input. |
3 |
Averager |
Computes a running average of the input. |
4 |
Buffer |
Captures input data which can be retrieved at a later point in time. |
5 |
Comparator |
Only allows data through that satisfies a comparison operation. |
6 |
Counter |
Counts the number of times an event was fired. |
7 |
Delta |
Only allows data through that is a min distance from a reference value. |
8 |
Fuser |
Combine data from multiple data sources into 1 data packet. |
9 |
Math |
Performs arithmetic on sensor data. |
10 |
Packer |
Combines multiple data values into 1 BLE packet. |
11 |
Passthrough |
Gate that only allows data though based on a user configured internal state. |
12 |
Pulse |
Detects and quantifies a pulse over the input values. |
13 |
RMS |
Computes the root mean square of the input. |
14 |
RSS |
Computes the root sum square of the input. |
15 |
Sample |
Holds data until a certain amount has been collected. |
16 |
Threshold |
Allows data through that crosses a boundary. |
17 |
Timer |
Periodically allow data through. |
To create a processor, call any
functions that has create
in its name.
mbl_mw_dataprocessor_accounter_create()
mbl_mw_dataprocessor_math_create()
mbl_mw_dataprocessor_threshold_create()
All data processor create functions are asynchronous and alert the caller when the processor is created on board through callback functions.
void create_fuser(MblMwMetaWearBoard* board) {
static auto fuser_created = [](MblMwDataProcessor* processor) -> void {
printf("fuser created\n");
};
auto acc_signal = mbl_mw_acc_get_acceleration_data_signal(board);
auto gyro_signal = mbl_mw_acc_get_gyroscope_data_signal(board);
mbl_mw_dataprocessor_fuser_create(acc_signal, gyro_signal, 1, create_fuser);
Input data signals that are marked with a MblMwCartesianFloat id, .i.e accelerometer, gyro, and magnetometer data, are limited to only using the Math, RMS, and RSS processors. Once fed through an RMS or RSS processor however, they can utilize the rest of the data processing functions.
Accounter¶
The accounter processor adds additional information to the BTLE packet to reconstruct the data’s timestamp, typically used with streaming raw accelerometer, gyro, and magnetometer data.
This processor is designed specifically for streaming, DO NOT use with the logger.
#include "metawear/processor/accounter.h"
void account_acc_data(MblMwMetaWearBoard* board) {
auto signal = mbl_mw_acc_get_acceleration_data_signal(board);
mbl_mw_dataprocessor_accounter_create(signal, [](MblMwDataProcessor* accounter) {
mbl_mw_datasignal_subscribe((MblMwDataSignal*)accounter, [](const MblMwData* data) {
cout << "real time = " << data->epoch << endl;
});
});
}
Accumulator¶
The accumulator computes a running sum over the inputs. Users can explicitly specify an output size (1 to 4 bytes) or let the API infer an appropriate size.
The output data type id of an accumulator is the same as its input source.
#include "metawear/processor/accumulator.h"
void create_accumulator(MblMwDataSignal* signal) {
static auto proc_created = [](MblMwDataProcessor* processor) -> void {
printf("accumulator created\n");
};
// API will determine how many bytes to allocate for the sum
mbl_mw_dataprocessor_accumulator_create(signal, proc_created);
}
Average¶
The averager computes a running average over the over the inputs. It will not produce any output until it has accumulated enough samples to match the specified sample size.
The output data type id of averager is the same as its input source.
#include "metawear/processor/average.h"
#include "metawear/sensor/gpio.h"
void create_averager(MblMwMetaWearBoard* board) {
static auto proc_created = [](MblMwDataProcessor* processor) -> void {
printf("averager created\n");
};
auto abs_ref_signal = mbl_mw_gpio_get_analog_input_data_signal(board, 0,
MBL_MW_GPIO_ANALOG_READ_MODE_ABS_REF);
// Compute running average using the previous 4 samples
mbl_mw_dataprocessor_average_create(abs_ref_signal, 4, proc_created);
}
Buffer¶
The buffer processor captures input data which can be read at a later time using mbl_mw_datasignal_read; no output is produced by this processor.
The data type id of a buffer’s state is the same as its input source.
#include "metawear/processor/buffer.h"
void create_buffer(MblMwDataSignal* signal) {
static auto proc_created = [](MblMwDataProcessor* processor) -> void {
printf("buffer created\n");
};
mbl_mw_dataprocessor_buffer_create(signal, proc_created);
}
Buffer processors can be used to capture data and retrieve it at a later time by reading its state.
Comparison¶
The comparator removes data that does not satisfy the comparison operation. Callers can force a signed or unsigned comparison, or let the API determine which is appropriate.
The output data type id of comparator is the same as its input source.
#include "metawear/processor/comparator.h"
#include "metawear/sensor/multichanneltemperature.h"
void setup_temp_comparator(MblMwMetaWearBoard* board) {
static auto proc_created = [](MblMwDataProcessor* processor) -> void {
printf("comparison processor created\n");
};
auto temp_signal = mbl_mw_multi_chnl_temp_get_temperature_data_signal(board,
MBL_MW_METAWEAR_RPRO_CHANNEL_ON_BOARD_THERMISTOR);
// only allow temperature data greater than 25C through
mbl_mw_dataprocessor_comparator_create(temp_signal, MBL_MW_COMPARATOR_OP_GT, 25.f,
proc_created);
}
Comparators can also be used in feedback/feedforward loops. Using mbl_mw_dataprocessor_comparator_modify_signal, you can compare input data against a dynamic reference value.
#include "metawear/core/event.h"
#include "metawear/processor/comparator.h"
#include "metawear/sensor/multichanneltemperature.h"
void setup_temp_comparator(MblMwMetaWearBoard* board) {
static auto cmds_recorded = [](void) -> void {
printf("feedback loop created\n");
};
static auto proc_created = [](MblMwDataProcessor* processor) -> void {
printf("comparison processor created\n");
mbl_mw_event_record_commands((MblMwEvent*) processor);
// Whenever data is received that satisfies the comparison, update the reference value
mbl_mw_dataprocessor_comparator_modify_signal(processor, MBL_MW_COMPARATOR_OP_GT,
(MblMwDataSignal*) processor);
mbl_mw_event_end_record((MblMwEvent*)processor, cmds_recorded);
};
auto temp_signal = mbl_mw_multi_chnl_temp_get_temperature_data_signal(board,
MBL_MW_METAWEAR_RPRO_CHANNEL_ON_BOARD_THERMISTOR);
// only allow temperature data greater than 25C through
mbl_mw_dataprocessor_comparator_create(temp_signal, MBL_MW_COMPARATOR_OP_GT, 25.f,
proc_created);
}
Multi-Value Comparison¶
Starting from firmware v1.2.3, the comparator can accept multiple reference values to compare against and has additional operation modes that can modify output values and when outputs are produced. The multi-value comparison filter is an extension of the comparison filter implemented on older firmware.
Operation modes are defined in the MblMwComparatorOperation enum, copied below with a description on expected outputs:
Operation |
Descripion |
---|---|
Absolute |
Input value is returned when the comparison is satisfied, behavior of old comparator |
Reference |
The reference value is output when the comparison is satisfied |
Zone |
Outputs the index (0 based) of the reference value that satisfied the comparison, n if none are valid |
Pass / Fail |
0 if the comparison fails, 1 if it passed |
Also note that you can only use one reference value when creating feedback/feedforward loops.
auto temp_signal = mbl_mw_multi_chnl_temp_get_temperature_data_signal(board,
MBL_MW_METAWEAR_RPRO_CHANNEL_ON_BOARD_THERMISTOR);
float references[4]= {18.f, 20.f, 22.f, 24.f};
// Check which threshold was crossed
mbl_mw_dataprocessor_multi_comparator_modify(temp_signal, MBL_MW_COMPARATOR_MODE_ZONE,
references, (uint8_t) sizeof(references), [](MblMwDataProcessor* processor) -> void {
printf("comparison processor created\n");
});
Counter¶
A counter keeps a tally of how many times it is called. It can be used by MblMwEvent pointers to count the numbers of times a MetaWear event was fired and enable simple events to utilize the full set of firmware features.
Counter data is only interpreted as an unsigned integer.
#include "metawear/core/settings.h"
#include "metawear/processor/counter.h"
void setup_dc_counter(MblMwMetaWearBoard* board) {
static auto proc_created = [](MblMwDataProcessor* processor) -> void {
printf("counter processor created\n");
};
auto dc_event = mbl_mw_settings_get_disconnect_event(board);
// Count the number of times the disconnected event was fired
mbl_mw_dataprocessor_counter_create(dc_event, proc_created);
}
Delta¶
A delta processor computes the difference between two successive data values and only allows data through that creates a difference greater in magnitude than the specified threshold.
When creating a delta processor, users will also choose how the processor transforms the output which can, in some cases, alter the output data type id.
Output |
Transformation |
Data Type ID |
---|---|---|
Absolute |
Input passed through untouched |
Same as input source i.e. float -> float |
Differential |
Difference between current and previous |
If input is unsigned int, output is signed int |
Binary |
1 if difference > 0, -1 if less than 0 |
Output is always signed int |
Constants identifying the output modes are defined in the MblMwDeltaMode enum.
#include "metawear/processor/delta.h"
#include "metawear/sensor/gpio.h"
void setup_adc_delta(MblMwMetaWearBoard* board) {
static auto proc_created = [](MblMwDataProcessor* processor) -> void {
printf("delta processor created\n");
};
auto adc_signal = mbl_mw_gpio_get_analog_input_data_signal(board, 0,
MBL_MW_GPIO_ANALOG_READ_MODE_ADC);
// Use binary mode to transform the output to +1/-1
// Only allow adc data through that creates an absolute difference of 128 or more
mbl_mw_dataprocessor_delta_create(adc_signal, MBL_MW_DELTA_MODE_BINARY, 128, proc_created);
}
High Pass Filter¶
High pass filters compute the difference of the current value from a running average of the previous N samples.
Output from this processor is delayed until the first N samples have been received.
#include "metawear/processor/average.h"
void hpf_acc_data(MblMwMetaWearBoard* board) {
auto signal = mbl_mw_acc_get_acceleration_data_signal(board);
mbl_mw_dataprocessor_highpass_create(signal, 4, [](MblMwDataProcessor* hpf) {
mbl_mw_datasignal_subscribe((MblMwDataSignal*)hpf, [](const MblMwData* data) {
auto value = (MblMwCartesianFloat*)data->value;
printf("hpf acc = (%.3f, %.3f, %.3f)\n", value->x, value->y, value->z);
});
});
}
Math¶
The math processor performs arithmetic or logical operations on the input. Users can force signed or unsigned operation, or allow the API to determine which is appropriate.
Depending on the operation, the output data type id can change.
Operation |
Data Type ID |
---|---|
Add, Sub, Mult, Div, Mod |
If input is unsigned, output is signed |
Sqrt, Abs |
If input is signed, output is unsigned |
Const |
Output type id is the same as input type id |
Remaining Ops |
API cannot infer, up to user to reassemble the bytes |
Constants identifying the operations are defined in the MblMwMathOperation enum.
#include "metawear/processor/math.h"
#include "metawear/sensor/multichanneltemperature.h"
void setup_adc_delta(MblMwMetaWearBoard* board) {
static auto proc_created = [](MblMwDataProcessor* processor) -> void {
printf("math processor created\n");
};
auto temp_signal = mbl_mw_multi_chnl_temp_get_temperature_data_signal(board,
MBL_MW_METAWEAR_RPRO_CHANNEL_ON_DIE);
// Added 273.15C to the input converting units to Kelvin
mbl_mw_dataprocessor_math_create(temp_signal, MBL_MW_MATH_OP_ADD, 273.15, proc_created);
}
Like the comparator, the math processor also supports feedback/feedforward loops. Using mbl_mw_dataprocessor_math_modify_rhs_signal, you can set the second operand with the output of another data signal.
#include "metawear/core/event.h"
#include "metawear/processor/math.h"
#include "metawear/sensor/switch.h"
void switch_feedback(MblMwDataProcessor* math_processor) {
static auto cmds_recorded = [](void) -> void {
printf("feedback loop completed\n");
};
auto owner = mbl_mw_event_get_owner((MblMwEvent*)math_processor);
auto switch_signal = mbl_mw_switch_get_state_data_signal(owner);
// everytime the switch state changes, the second operand of the math operation will also
// change to match the switch state (1 or 0)
mbl_mw_event_record_commands((MblMwEvent*) switch_signal);
mbl_mw_dataprocessor_math_modify_rhs_signal(math_processor, switch_signal);
mbl_mw_event_end_record((MblMwEvent*) switch_signal, cmds_recorded);
}
Packer¶
The packer processor combines multiple data samples into 1 BLE packet to increase the data throughput. You can pack between 4 to 8 samples per packet depending on the data size.
Note that if you use the packer processor with raw motion data instead of using their packed data producer variants, you will only be able to combine 2 data samples into a packet instead of 3 samples however, you can chain an accounter processor to associate a timestamp with the packed data.
#include "metawear/processor/packer.h"
int samples;
void pack_data(MblMwDataSignal* signal) {
mbl_mw_dataprocessor_packer_create(signal, 4, [](MblMwDataProcessor* packer) {
samples = 0;
mbl_mw_datasignal_subscribe((MblMwDataSignal*)packer, [](const MblMwData* data) {
samples++;
cout << "samples = " << samples << endl;
});
});
}
Passthrough¶
The passthrough processor is akin to a gate in which the user has manual control over, exercised by setting the processor’s count value using mbl_mw_dataprocessor_passthrough_set_count.
It has three operation modes that each use the count value differently:
Mode |
Description |
---|---|
All |
Allow all data through |
Conditional |
Only allow data through if the count > 0 |
Count |
Only allow a set number of samples through |
Constants identifying the operation modes are defined in the MblMwPassthroughMode enum.
#include "metawear/processor/passthrough.h"
#include "metawear/sensor/gpio.h"
void passthrough_processor(MblMwMetaWearBoard* board) {
static auto proc_created = [](MblMwDataProcessor* processor) -> void {
printf("passthrough processor created\n");
};
auto abs_gpio_signal = mbl_mw_gpio_get_analog_input_data_signal(board, 0,
MBL_MW_GPIO_ANALOG_READ_MODE_ABS_REF);
// Create a passthrough processor in count mode
// only allows 16 data samples through, then block all other samples
mbl_mw_dataprocessor_passthrough_create(abs_gpio_signal, MBL_MW_PASSTHROUGH_COUNT, 16,
proc_created);
}
Pulse¶
The pulse processor detects and quantifies a pulse over a set of data.
Pulses are defined as a minimum number of data points that rise above then fall below a threshold and quantified by transforming the collection of data into three different values:
Output |
Description |
Data Type ID |
---|---|---|
Width |
Number of samples that made up the pulse |
Unsigned integer |
Area |
Summation of all the data in the pulse |
Same as input i.e. float -> float |
Peak |
Highest value in the pulse |
Same as input i.e. float -> float |
On Detect |
Return 0x1 as soon as pulse is detected |
Unsigned integer |
Constants defining the different output modes are defined in the MblMwPulseOutput enum.
#include "metawear/processor/pulse.h"
#include "metawear/sensor/gpio.h"
void passthrough_processor(MblMwMetaWearBoard* board) {
static auto proc_created = [](MblMwDataProcessor* processor) -> void {
printf("pulse processor created\n");
};
auto adc_gpio_signal = mbl_mw_gpio_get_analog_input_data_signal(board, 0,
MBL_MW_GPIO_ANALOG_READ_MODE_ADC);
// values must rise above then fall below 512 and have a min of 16 values
// the highest value in the collected data will be returned
mbl_mw_dataprocessor_pulse_create(adc_gpio_signal, MBL_MW_PULSE_OUTPUT_PEAK, 512.f, 16,
proc_created);
}
RMS¶
The RMS processor computes the root mean square over multi component data i.e. XYZ values from acceleration data.
The processor will convert MblMwCartesianFloat inputs into float outputs.
#include "metawear/processor/rms.h"
#include "metawear/sensor/accelerometer.h"
void create_rms_processor(MblMwMetaWearBoard* board) {
static auto proc_created = [](MblMwDataProcessor* processor) -> void {
printf("rms processor created\n");
};
auto acc_signal = mbl_mw_acc_get_acceleration_data_signal(board);
mbl_mw_dataprocessor_rms_create(acc_signal, proc_created);
}
RSS¶
The RSS processor computes the root sum square, or vector magnitude, over multi component data i.e. XYZ values from acceleration data.
The processor will convert MblMwCartesianFloat inputs into float outputs.
#include "metawear/processor/rms.h"
#include "metawear/sensor/accelerometer.h"
void create_rss_processor(MblMwMetaWearBoard* board) {
static auto proc_created = [](MblMwDataProcessor* processor) -> void {
printf("rss processor created\n");
};
auto acc_signal = mbl_mw_acc_get_acceleration_data_signal(board);
mbl_mw_dataprocessor_rss_create(acc_signal, proc_created);
}
Sample¶
The sample processor acts like a bucket, only allowing data through once it has collected a set number of samples. It functions as a data historian of sorts providing a way to look at the data values prior to an event.
The output data type id of an accumulator is the same as its input source.
#include "metawear/processor/sample.h"
#include "metawear/sensor/switch.h"
void sample_processor(MblMwMetaWearBoard* board) {
static auto proc_created = [](MblMwDataProcessor* processor) -> void {
printf("sample processor created\n");
};
auto switch_signal = mbl_mw_switch_get_state_data_signal(board);
// collect 16 samples of switch state data before allowing data to pass
mbl_mw_dataprocessor_sample_create(switch_signal, 16, proc_created);
}
Threshold¶
The threshold processor only allows data through that crosses a boundary, either crossing above or below it.
It has two output modes:
Output |
Transformation |
Data Type ID |
---|---|---|
Absolute |
Input passed through untouched |
Same as input source i.e. float -> float |
Binary |
1 if value rose above, -1 if it fell below |
Output is always signed int |
Constants identifying the output modes are defined by the MblMwThresholdMode enum.
#include "metawear/processor/threshold.h"
#include "metawear/sensor/multichanneltemperature.h"
void threshold_processor(MblMwMetaWearBoard* board) {
static auto proc_created = [](MblMwDataProcessor* processor) -> void {
printf("threshold processor created\n");
};
auto temp_signal = mbl_mw_multi_chnl_temp_get_temperature_data_signal(board,
MBL_MW_METAWEAR_RPRO_CHANNEL_ON_BOARD_THERMISTOR);
// only allow data through when it rises above or falls below 25C
mbl_mw_dataprocessor_threshold_create(temp_signal, MBL_MW_THRESHOLD_MODE_BINARY, 25, 0,
proc_created);
}
Time¶
The time processor only allows data to pass at fixed intervals. It can used to limit the rate at which data is received if your sensor does not have the desired sampling rate.
The processor has two output modes:
Output |
Transformation |
Data Type ID |
---|---|---|
Absolute |
Input passed through untouched |
Same as input source i.e. float -> float |
Differential |
Difference between current and previous |
If input is unsigned int, output is signed int |
Constants identifying the the output modes are defined by the MblMwTimeMode.
#include "metawear/processor/time.h"
#include "metawear/sensor/accelerometer.h"
void threshold_processor(MblMwMetaWearBoard* board) {
static auto proc_created = [](MblMwDataProcessor* processor) -> void {
printf("time processor created\n");
};
auto acc_signal = mbl_mw_acc_get_acceleration_data_signal(board);
// reduce accelerometer data rate to 125ms or 8Hz
mbl_mw_dataprocessor_time_create(acc_signal, MBL_MW_TIME_ABSOLUTE, 125, proc_created);
}